skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Lawrence, David M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Sedimentary records indicate that atmospheric dust has increased substantially since preindustrial times. However, state-of-the-art global Earth system models (ESMs) are unable to capture this historical increase, posing challenges in assessing the impacts of desert dust on Earth's climate. To address this issue, we construct a globally gridded dust emission dataset (DustCOMMv1) spanning 1841–2000. We do so by combining 19 sedimentary records of dust deposition with observational and modeling constraints on the modern-day dust cycle. The derived emission dataset contains interdecadal variability of dust emissions as forced by the deposition flux records, which increased by approximately 50 % from 1851–1870 to 1981–2000. We further provide future dust emission datasets for 2000–2100 by assuming three possible scenarios for how future dust emissions will evolve. We evaluate the historical dust emission dataset and illustrate its effectiveness in enforcing a historical dust increase in ESMs by conducting a long-term (1851–2000) dust cycle simulation with the Community Earth System Model (CESM2). The simulated dust depositions are in reasonable agreement with the long-term increase in most sedimentary dust deposition records and with measured long-term trends in dust concentration at sites in Miami and Barbados. This contrasts with the CESM2 simulations using a process-based dust emission scheme and with simulations from the Coupled Model Intercomparison Project (CMIP6), which show little to no secular trends in dust deposition, concentration, and optical depth. The DustCOMM emissions thus enable ESMs to account for the historical radiative forcings (RFs), including due to dust direct interactions with radiation (direct RF). Our CESM2 simulations estimate a 1981–2000 minus 1851–1870 direct RF of −0.10 W m−2 by dust aerosols up to 10 µm in diameter (PM10) at the top of atmosphere (TOA). This global dust emission dataset thus enables models to more accurately account for historical aerosol forcings, thereby improving climate change projections such as those in the Intergovernmental Panel on Climate Change (IPCC) assessment reports. 
    more » « less
  2. Abstract Terrestrial processes influence the atmosphere by controlling land‐to‐atmosphere fluxes of energy, water, and carbon. Prior research has demonstrated that parameter uncertainty drives uncertainty in land surface fluxes. However, the influence of land process uncertainty on the climate system remains underexplored. Here, we quantify how assumptions about land processes impact climate using a perturbed parameter ensemble for 18 land parameters in the Community Earth System Model version 2 under preindustrial conditions. We find that an observationally‐informed range of land parameters generate biogeophysical feedbacks that significantly influence the mean climate state, largely by modifying evapotranspiration. Global mean land surface temperature ranges by 2.2°C across our ensemble (σ = 0.5°C) and precipitation changes were significant and spatially variable. Our analysis demonstrates that the impacts of land parameter uncertainty on surface fluxes propagate to the entire Earth system, and provides insights into where and how land process uncertainty influences climate. 
    more » « less
  3. Abstract Crucial to the assessment of future water security is how the land model component of Earth System Models partition precipitation into evapotranspiration and runoff, and the sensitivity of this partitioning to climate. This sensitivity is not explicitly constrained in land models nor the model parameters important for this sensitivity identified. Here, we seek to understand parametric controls on runoff sensitivity to precipitation and temperature in a state‐of‐the‐science land model, the Community Land Model version 5 (CLM5). Process‐parameter interactions underlying these two climate sensitivities are investigated using the sophisticated variance‐based sensitivity analysis. This analysis focuses on three snow‐dominated basins in the Colorado River headwaters region, a prominent exemplar where land models display a wide disparity in runoff sensitivities. Runoff sensitivities are dominated by indirect or interaction effects between a few parameters of subsurface, snow, and plant processes. A focus on only one kind of parameters would therefore limit the ability to constrain the others. Surface runoff exhibits strong sensitivity to parameters of snow and subsurface processes. Constraining snow simulations would require explicit representation of the spatial variability across large elevation gradients. Subsurface runoff and soil evaporation exhibit very similar sensitivities. Model calibration against the subsurface runoff flux would therefore constrain soil evaporation. The push toward a mechanistic treatment of processes in CLM5 have dampened the sensitivity of parameters compared to earlier model versions. A focus on the sensitive parameters and processes identified here can help characterize and reduce uncertainty in water resource sensitivity to climate change. 
    more » « less
  4. Arid and semi-arid regions of the world are particularly vulnerable to greenhouse gas–driven hydroclimate change. Climate models are our primary tool for projecting the future hydroclimate that society in these regions must adapt to, but here, we present a concerning discrepancy between observed and model-based historical hydroclimate trends. Over the arid/semi-arid regions of the world, the predominant signal in all model simulations is an increase in atmospheric water vapor, on average, over the last four decades, in association with the increased water vapor–holding capacity of a warmer atmosphere. In observations, this increase in atmospheric water vapor has not happened, suggesting that the availability of moisture to satisfy the increased atmospheric demand is lower in reality than in models in arid/semi-arid regions. This discrepancy is most clear in locations that are arid/semi-arid year round, but it is also apparent in more humid regions during the most arid months of the year. It indicates a major gap in our understanding and modeling capabilities which could have severe implications for hydroclimate projections, including fire hazard, moving forward. 
    more » « less
  5. Abstract. Desert dust is an important atmospheric aerosol that affects the Earth's climate, biogeochemistry, and air quality. However, current Earth system models (ESMs) struggle to accurately capture the impact of dust on the Earth's climate and ecosystems, in part because these models lack several essential aeolian processes that couple dust with climate and land surface processes. In this study, we address this issue by implementing several new parameterizations of aeolian processes detailed in our companion paper in the Community Earth System Model version 2 (CESM2). These processes include (1) incorporating a simplified soil particle size representation to calculate the dust emission threshold friction velocity, (2) accounting for the drag partition effect of rocks and vegetation in reducing wind stress on erodible soils, (3) accounting for the intermittency of dust emissions due to unresolved turbulent wind fluctuations, and (4) correcting the spatial variability of simulated dust emissions from native to higher spatial resolutions on spatiotemporal dust variability. Our results show that the modified dust emission scheme significantly reduces the model bias against observations compared with the default scheme and improves the correlation against observations of multiple key dust variables such as dust aerosol optical depth (DAOD), surface particulate matter (PM) concentration, and deposition flux. Our scheme's dust also correlates strongly with various meteorological and land surface variables, implying higher sensitivity of dust to future climate change than other schemes' dust. These findings highlight the importance of including additional aeolian processes for improving the performance of ESM aerosol simulations and potentially enhancing model assessments of how dust impacts climate and ecosystem changes. 
    more » « less
  6. Accurate representation of permafrost carbon emissions is crucial for climate projections, yet current Earth system models inadequately represent permafrost carbon. Sustained funding opportunities are needed from government and private sectors for prioritized model development. 
    more » « less
  7. Abstract In this study, we investigate the air temperature response to land-use and land-cover change (LULCC; cropland expansion and deforestation) using subgrid land model output generated by a set of CMIP6 model simulations. Our study is motivated by the fact that ongoing land-use activities are occurring at local scales, typically significantly smaller than the resolvable scale of a grid cell in Earth system models. It aims to explore the potential for a multimodel approach to better characterize LULCC local climatic effects. On an annual scale, the CMIP6 models are in general agreement that croplands are warmer than primary and secondary land (psl; mainly forests, grasslands, and bare ground) in the tropics and cooler in the mid–high latitudes, except for one model. The transition from warming to cooling occurs at approximately 40°N. Although the surface heating potential, which combines albedo and latent heat flux effects, can explain reasonably well the zonal mean latitudinal subgrid temperature variations between crop and psl tiles in the historical simulations, it does not provide a good prediction on subgrid temperature for other land tile configurations (crop vs forest; grass vs forest) under Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5) forcing scenarios. A subset of simulations with the CESM2 model reveals that latitudinal subgrid temperature variation is positively related to variation in net surface shortwave radiation and negatively related to variation in the surface energy redistribution factor, with a dominant role from the latter south of 30°N. We suggest that this emergent relationship can be used to benchmark the performance of land surface parameterizations and for prediction of local temperature response to LULCC. 
    more » « less